Wiley-IEEE Press

  • This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods.
    Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers.
    Among the highlights of coverage are:
    * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems
    * Broadband, robust numerical modeling of passive microwave components and circuits
    * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities
    * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems
    * Finite element modeling of electromagnetic waves in periodic structures
    The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness.
    This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

  • Explores the breadth and versatility of Human Systems Engineering (HSE) practices and illustrates its value in system development A Framework of Human Systems Engineering: Applications and Case Studies offers a guide to identifying and improving methods to integrate human concerns into the conceptualization and design of systems. With contributions from a panel of noted experts on the topic, the book presents a series of Human Systems Engineering (HSE) applications on a wide range of topics: interface design, training requirements, personnel capabilities and limitations, and human task allocation. Each of the book's chapters present a case study of the application of HSE from different dimensions of socio-technical systems. The examples are organized using a socio-technical system framework to reference the applications across multiple system types and domains. These case studies are based in real-world examples and highlight the value of applying HSE to the broader engineering community. This important book: Includes a proven framework with case studies to different dimensions of practice, including domain, system type, and system maturity Contains the needed tools and methods in order to integrate human concerns within systems Encourages the use of Human Systems Engineering throughout the design process Provides examples that cross traditional system engineering sectors and identifies a diverse set of human engineering practices Written for systems engineers, human factors engineers, and HSI practitioners, A Framework of Human Systems Engineering: Applications and Case Studies provides the information needed for the better integration of human and systems and early resolution of issues based on human constraints and limitations.

  • "Professor Andreas F. Molisch, renowned researcher and educator, has put together the comprehensive book, Wireless Communications. The second edition, which includes a wealth of new material on important topics, ensures the role of the text as the key resource for every student, researcher, and practitioner in the field."
    -Professor Moe Win, MIT, USA Wireless communications has grown rapidly over the past decade from a niche market into one of the most important, fast moving industries. Fully updated to incorporate the latest research and developments, Wireless Communications, Second Edition provides an authoritative overview of the principles and applications of mobile communication technology. The author provides an in-depth analysis of current treatment of the area, addressing both the traditional elements, such as Rayleigh fading, BER in flat fading channels, and equalisation, and more recently emerging topics such as multi-user detection in CDMA systems, MIMO systems, and cognitive radio. The dominant wireless standards; including cellular, cordless and wireless LANs; are discussed. Topics featured include: wireless propagation channels, transceivers and signal processing, multiple access and advanced transceiver schemes, and standardised wireless systems. Combines mathematical descriptions with intuitive explanations of the physical facts, enabling readers to acquire a deep understanding of the subject. Includes new chapters on cognitive radio, cooperative communications and relaying, video coding, 3GPP Long Term Evolution, and WiMax; plus significant new sections on multi-user MIMO, 802.11n, and information theory. Companion website featuring: supplementary material on 'DECT', solutions manual and presentation slides for instructors, appendices, list of abbreviations and other useful resources.