• This book is based on the George Fisher Baker Lecture given by Jean-Michel Savéant at Cornell University in Fall 2002.
    * The first book focusing on molecular electrochemistry
    * Relates to other fields, including photochemistry and biochemistry
    * Outlines clearly the connection between concepts, experimental illustrations, proofs and supporting methods
    * Appendixes to provide rigorous demonstrations to prevent an overload of algebra in the main text
    * Applications-oriented, focused on analyzing the results obtained rather than the methodology

  • There are a wide range of variables for actuaries to consider when calculating a motorist's insurance premium, such as age, gender and type of vehicle. Further to these factors, motorists' rates are subject to experience rating systems, including credibility mechanisms and Bonus Malus systems (BMSs). Actuarial Modelling of Claim Counts presents a comprehensive treatment of the various experience rating systems and their relationships with risk classification. The authors summarize the most recent developments in the field, presenting ratemaking systems, whilst taking into account exogenous information. The text: Offers the first self-contained, practical approach to a priori and a posteriori ratemaking in motor insurance. Discusses the issues of claim frequency and claim severity, multi-event systems, and the combinations of deductibles and BMSs. Introduces recent developments in actuarial science and exploits the generalised linear model and generalised linear mixed model to achieve risk classification. Presents credibility mechanisms as refinements of commercial BMSs. Provides practical applications with real data sets processed with SAS software. Actuarial Modelling of Claim Counts is essential reading for students in actuarial science, as well as practicing and academic actuaries. It is also ideally suited for professionals involved in the insurance industry, applied mathematicians, quantitative economists, financial engineers and statisticians.

  • The latest in a series providing chemical physicists with a forum for critical, authoritative evaluations of advances in every area of the discipline, this stand-alone volume focuses on using high resolution molecular spectroscopy to arrive at global and accurate Vibration Hamiltonians.