Zhihua Wang

  • This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won't want to miss this invaluable reference.Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter;
    Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter;
    Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.

  • This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices.Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers;Describes all key building blocks of ultra-low power circuits, from a systems perspective;Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  • This book provides readers with detailed explanation of the design principles of CMOS integrated circuits for wireless medical and health care, from the perspective of two successfully-commercialized applications. Design techniques for both the circuit block level and the system level are discussed, based on real design examples. CMOS IC design techniques for the entire signal chain of wireless medical and health care systems are covered, including biomedical signal acquisition, wireless transceivers, power management and SoC integration, with emphasis on ultra-low-power IC design techniques.

  • This book provides an in-depth introduction to the newest technologies for designing wireless power transfer systems for medical applications. The authors present a systematic classification of the various types of wireless power transfer, with a focus on inductive power coupling. Readers will learn to overcome many challenges faced in the design a wirelessly powered implant, such as power transfer efficiency, power stability, and the size of power antennas and circuits. This book focuses exclusively on medical applications of the technology and a batteryless capsule endoscopy system and other, real wirelessly powered systems are used as examples of the techniques described.