• Ce traité d'algèbre en deux volumes s'adresse aux étudiants de licence ou master de mathématiques (L3-M1) et à ceux qui préparent le CAPES ou l'agrégation.
    Ce tome 2 traite de la notion générale de divisibilité des éléments dans les anneaux : anneaux euclidiens, principaux, factoriels. Il présente une généralisation de cette notion aux idéaux - anneaux de Dedekind - et donne des applications à la théorie des nombres : anneau des entiers d'un corps de nombres, ramification.
    Dans la seconde partie, il traite de l'algèbre linéaire et multilinéaire : modules, modules sur un anneau principal, dualité, applications multilinéaires, produit tensoriel, algèbre tensorielle, produit extérieur, algèbre extérieure (application au déterminant).
    Chaque notion est développée depuis les définitions de base jusqu'à des résultats très avancés, avec toutes les démonstrations. Les chapitres sont suivis de thèmes de réflexion (TR) qui permettent d'étudier en profondeur des notions qui illustrent ou complètent le cours.

  • Ce livre s'adresse aux étudiants de licence ou master de mathématiques (L3-M1) et à ceux qui préparent le Capes ou l'agrégation.


    Il traite de la théorie des groupes, de la théorie des corps et d'un de leurs points communs essentiels, la théorie de Galois des extensions finies. Chacune de ces théories est présentée en détails, depuis les définitions de base jusqu'à des résultats très élaborés. On y présente de nombreuses applications comme, par exemple, les problèmes de constructions à la règle et au compas (quadrature du cercle, trisection de l'angle, duplication du cube, polygones réguliers, ainsi que la résolution par radicaux des équations polynomiales. Les chapitres sont, pour la plupart, suivis de thèmes de réflexion (TR) et de travaux pratiques de « mathématiques assistées par ordinateurs » (TP). Ces TR et TP permettent d'étudier en profondeur des notions qui illustrent ou complètent le cours.

    Daniel Guin a été professeur à l'université Montpellier 2 où il a enseigné, en particulier, l'algèbre à tous les niveaux, de L1 au M2. Ce livre correspond aux cours qu'il a donnés pendant plusieurs années en L3. Il est spécialiste de K-théorie algébrique et d'algèbre homologique.
    Thomas Hausberger est maître de conférences à l'université Montpellier 2. Spécialiste de théorie des nombres, il enseigne, entre autres, l'algèbre et l'arithmétique de la licence à la préparation à l'agrégation. Il a oeuvré à la mise en place de travaux pratiques sur ordinateur, pour une approche expérimentale des mathématiques basée sur une « instrumentation raisonnée » du système de calcul formel.

empty