• Lyapunov Exponents

    Luís Barreira

    This book offers a self-contained introduction to the theory of Lyapunov exponents and its applications, mainly in connection with hyperbolicity, ergodic theory and multifractal analysis. It discusses the foundations and some of the main results and main techniques in the area, while also highlighting selected topics of current research interest. With the exception of a few basic results from ergodic theory and the thermodynamic formalism, all the results presented include detailed proofs. The book is intended for all researchers and graduate students specializing in dynamical systems who are looking for a comprehensive overview of the foundations of the theory and a sample of its applications. 

  • The dimension theory of dynamical systems has progressively developed, especially over the last two decades, into an independent and extremely active field of research. Its main aim is to study the complexity of sets and measures that are invariant under the dynamics. In particular, it is essential to characterizing chaotic strange attractors. To date, some parts of the theory have either only been outlined, because they can be reduced to the case of maps, or are too technical for a wider audience. In this respect, the present monograph is intended to provide a comprehensive guide. Moreover, the text is self-contained and with the exception of some basic results in Chapters 3 and 4, all the results in the book include detailed proofs.
     
    The book is intended for researchers and graduate students specializing in dynamical systems who wish to have a sufficiently comprehensive view of the theory together with a working knowledge of its main techniques. The discussion of some open problems is also included in the hope that it may lead to further developments. Ideally, readers should have some familiarity with the basic notions and results of ergodic theory and hyperbolic dynamics at the level of an introductory course in the area, though the initial chapters also review all the necessary material.

  • Ce manuel introductif s'adresse à tout étudiant (classe préparatoire, université, école ingénieurs) connaissant les principes de bases en algèbre linéaire, calcul différentiel et intégral.
    Il aborde notamment les notions de :
    O fonctions holomorphes, o fonctions analytiques, o équations différentielles ordinaires, o séries de Fourier, o applications aux équations aux dérivées partielles.

    Il contient un grand nombre d'exemples illustrant en détail les nouveaux concepts et résultats. À la fin de chaque chapitre, l'étudiant trouvera des exercices de difficulté progressive, toujours accompagnés de leurs solutions. L'ouvrage « Exercices d'Analyse Complexe et Équations Différentielles » de Barreira et Valls, dans la même collection, lui permettra de compléter son étude.

  • This book gives a comprehensive overview of the relationship between admissibility and hyperbolicity. Essential theories and selected developments are discussed with highlights to applications. The dedicated readership includes researchers and graduate students specializing in differential equations and dynamical systems (with emphasis on hyperbolicity) who wish to have a broad view of the topic and working knowledge of its techniques. The book may also be used as a basis for appropriate graduate courses on hyperbolicity; the pointers and references given to further research will be particularly useful.The material is divided into three parts: the core of the theory, recent developments, and applications. The first part pragmatically covers the relation between admissibility and hyperbolicity, starting with the simpler case of exponential contractions. It also considers exponential dichotomies, both for discrete and continuous time, and establishes corresponding results building on the arguments for exponential contractions. The second part considers various extensions of the former results, including a general approach to the construction of admissible spaces and the study of nonuniform exponential behavior. Applications of the theory to the robustness of an exponential dichotomy, the characterization of hyperbolic sets in terms of admissibility, the relation between shadowing and structural stability, and the characterization of hyperbolicity in terms of Lyapunov sequences are given in the final part. 

  • Ce recueil d'exercices vise principalement les étudiants qui s'initient à l'analyse complexe, aux équations différentielles, ou aux deux domaines.
    On y considère notamment les notions de :
    O fonctions holomorphes, o fonctions analytiques, o équations différentielles ordinaires, o séries de Fourier, o applications aux équations aux dérivées partielles.

    Au total, le livre propose 400 exercices. Plus de deux cents d'entre eux sont complètement résolus, les autres sont présentés avec leurs solutions. Le contenu et la progression de ces exercices suivent de près le manuel « Analyse Complexe et Équations Différentielles » de Barreira, publié dans la même collection.

    Luís Barreira et Clàudia Valls, professeurs à l'Instituto Superior Técnico de Lisbonne, sont spécialistes en équations différentielles et systèmes dynamiques, domaines dans lesquels ils ont publié plusieurs livres.

  • Ce livre est une introduction à la théorie des systèmes dynamiques. On étudie les systèmes dynamiques topologiques, en basse dimension, hyperboliques et symboliques, ainsi que, brièvement, la théorie ergodique.
    Le livre peut être utilisé comme manuel pour un cours dun ou deux semestres pour les étudiants de niveau avancé de licence ou les étudiants des cycles supérieurs. Il peut aussi être utilisé pour une étude indépendante et comme point de départ pour létude de sujets plus spécialisés. Lexposition est directe et rigoureuse. En particulier, tous les résultats sont prouvés. Le texte comprend de nombreux exemples qui illustrent en détail les concepts et les résultats, ainsi que 140 exercices, avec différents niveaux de difficulté.

empty